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We address the problem of controlling the energy flow in lattice systems: we investigate, in an analytical
approach, the properties of the heat conductivity of the harmonic crystal with self-consistent stochastic reser-
voirs, a single model with normal conductivity. For the case of weak interparticle interaction, in a perturbative
analysis, we obtain an expression for the thermal conductivity and show how to decrease and/or increase the
heat current inside the system by changing the masses of the particles and/or the on-site potentials. These
results may be useful in the construction of devices controlling the heat conduction.
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It is still a challenging problem of nonequilibrium statis-
tical mechanics to derive the dynamical laws of macroscopic
phenomena in terms of simple microscopic models. In par-
ticular, the precise conditions in microscopic systems of in-
teracting particles that lead to the �macroscopic phenomeno-
logical� Fourier’s law of heat conduction are still unknown
�1�. Many works have been devoted to this problem: there is
plenty of numerical simulations �contradictions exist, see
e.g., Refs. �2–5�� and some few analytical results �see, e.g.,
Refs. �6–9� and references there in�. We still ignore the pre-
cise mechanism behind the Fourier’s law, but, after years of
intensive research, our understanding of heat conduction is
good enough to permit us to investigate, for example, the
possibility to control the heat flow inside a one-dimensional
�1D� chain, a very interesting problem that opens the possi-
bility to propose new devices such as a thermal rectifier.
There are some recent results on such a subject �again� by
means of computer simulations �10,11�.

In this work, our aim is to present an attempt of an ana-
lytical treatment of the problem of controlling the heat con-
ductivity properties of a model that mimics a real system,
i.e., a system with normal heat conductivity. Here we con-
sider the model of the harmonic crystal with self-consistent
stochastic reservoirs, and show how to increase and/or de-
crease its heat conductivity. This model consists of a chain of
oscillators with harmonic nearest-neighbor interparticle in-
teractions, harmonic on-site potential and a stochastic heat
bath coupled to each site. The interior heat reservoirs are
interpreted, from a physical point of view, as a schematical
representation of the degrees of freedom not included in the
harmonic Hamiltonian �i.e., the inner reservoirs represent the
anharmonic part of the interaction�. This model has been
introduced a long time ago �12�, and has been recently revis-
ited in Ref. �13�, where the authors rigorously show that it
obeys the Fourier’s law. As well known, for the harmonic
version with reservoirs at the boundaries only, i.e., if we turn
off the inner heat baths, the Fourier law does not hold �14�.

Here, using an analytical approach, for the case of weak
interparticle interaction, in a perturbative analysis we obtain

an expression for the thermal conductivity which allows us
to propose mechanisms to decrease or increase the heat flow
in the system. Namely, we show that the conductivity be-
comes smaller as we take different masses for the interacting
oscillators, and also as we take different coefficients for the
harmonic on-site potentials.

Let us introduce the model. We take N oscillators with
Hamiltonian

H�q,p� = �
j=1

N
1

2� pj
2

mj
+ Mjqj

2 + �
l�j

qlJljqj� , �1�

where J is Hermitian, JT=J; Mj ,mj �0; with the time evo-
lution

dqj =
�H

�pj
dt =

pj

mj
dt ,

�2�

dpj = −
�H

�qj
dt − � jpjdt + � j

1/2dBj ,

where Bj are independent Wiener processes; � j is the heat
bath coupling for the jth site; � j =2mj� jTj, where Tj is the
temperature of the jth thermal reservoir.

The model in the specific case of identical particle masses
mj =1 and uniform on-site potential Mj =M has been already
studied in Ref. �15�. Now, we turn to this more general ver-
sion and investigate the effects in the heat conductivity due
to changes in mj and Mj for different sites j, an interesting
result not discovered before. Some expressions with similar
ones already described in this previous work �15� are pre-
sented ahead again in order to make clear the changes due to
the different masses and on-site potentials.

The energy of the oscillator j is

Hj =
pj

2

2mj
+

1

2
Mjqj

2 +
1

2�
l�j

qlJljqj =
pj

2

2mj
+ U1�qj� +

1

2�
l�j

U2�qj

− ql� , �3�

where U1 and U2 comes from �1� and � jHj =H. Hence, it
follows that
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� dHj

dt
	 = 
Rj�t�� − 
F j→ − F→j� , �4�

where 
·� means the expectation with respect to the noise
distribution, and


Rj�t�� = � j�Tj − 
pj
2�/mj� �5�

is the energy flux from the jth bath to the jth site; the energy
current inside the system is given by

F j→ = �
l�j

� U2�qj − ql�
1

2
� pj

mj
+

pl

ml
� . �6�

Precisely, F j→ describes the heat flow from the jth site to the
lth sites, and F→j is given by the expression for F j→ by
changing l with j.

To study the heat flow in the steady state, we follow the
approach described in previous works �6,15�. Namely, we
start from a system with isolated states, i.e., without interpar-
ticle interactions, solve this simple problem and obtain the
expression of the heat flow for the complete model �with the
interparticle potential� using the Girsanov theorem, a tool of
stochastic differential equations �16�. In the sequel, we carry
out a perturbative analysis, which is not naive as we com-
ment on later.

We introduce, for convenience, the phase-space vector
�= �q , p�, with 2N coordinates, and write the time evolution
equations �2� as

�̇ = − A� − U2� − �� , �7�

where the 2N	2N matrices A and � are given by

A = � 0 − M−1

M 

�, � = �0 0

0 �1/2 � , �8�

where M, M, 
, and � are the N	N diagonal matrices,
M jl=� jlMl, M jl=� jlml, 
 jl=� jl�l, and � jl=� jl�l; � are inde-
pendent white noises; U2� is the derivative of U2 in relation to
q �note that its contribution to �k is nonvanishing only for
k�N�. Discarding the interparticle U2 term, the solution of
�7� above is the well-known Ornstein-Uhlenbeck �Gaussian�
process

��t� = e−tA��0� + �
0

t

dse−�t−s�A���s� . �9�

We take ��0�=0 for simplicity, and so, the covariance be-
comes


��t���s��  C�t,s� = �e−�t−s�AC�s,s� , t  s ,

C�t,t�e−�s−t�AT
, t � s ,

�
�10�

C�t,t� = �
0

t

dse−sA�2e−sAT
.

It follows, by, e.g., diagonalizing A, that �for a single site
� j = �qj , pj��

exp�− tA� = e−t�j/2�cosh�t� j��1 0

0 1
�

+
sinh�t� j�

� j
� � j/2 mj

−1

− Mj − � j/2
��,

� j = �� � j

2
�2

−
Mj

mj
�1/2

. �11�

The complete expression for e−tA involving 2N	2N matrices
easily follows. For the case of isolated states, i.e., U20, as
t→� we have the convergence to the equilibrium �each iso-
lated site is linked to a unique thermal reservoir� and the
Boltzmann-Gibbs stationary state is Gaussian, with mean
zero and covariance

C = �
0

�

dse−sA�2e−sAT
= �TM−1 0

0 TM
� , �12�

where T is a diagonal N	N matrix with T jl=� jlTl.
Now we turn to the complete process �with interparticle

interaction� by using, as said, the Girsanov theorem, which
gives us a measure for the complete process in terms of the
measure �C obtained for the decoupled process �with J=0,
i.e., U20�. For example, for the two-point correlation func-
tion, the theorem establishes that


�u�t1��v�t2�� =� �u�t1��v�t2�Z�t�d�C/norm, �13�

where t1 , t2� t; � and � are the solutions for the complete
and decoupled processes, respectively. The factor Z�t� is

Z�t� = exp��
0

t

udB −
1

2
�

0

t

u2ds�, �i
1/2ui = − Jik�k,

the inner products above are in R2N. In what follows, we will
use the index notation: i for index values in the set �N
+1,N+2, . . . ,2N�, j for values in the set �1,2 , . . . ,N�, and k
in �1,2 , . . . ,2N�. For the first term above we have

uidBi = �i
−1/2ui�i

1/2dBi = − �i
−1Jij� j�d�i + Aik�kdt� , �14�

and using the Itô formula �16�, we get

− �i
−1Jij� jd�i = − dF − �i

−1�kAki
T Jij� jdt ,

F��� = �i
−1�iJij� j .

Hence, it follows that

Z�t� = exp�− F„��t�… + F„��0�… − �
0

t

dsWJ„��s�…� ,

with

WJ„��s�… = − �i
−1mj

−1�i�s�Jij� j+N�s� + �i
−1�k�s�Aki

T Jij� j�s�

+ O�J2� .

As previously described in �6�, to study the heat current in
the steady state we need to investigate limt→� F j→�t�, which
is given in terms of the correlation functions
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lim
t→�


�u�t��v�t�� = lim
t→�

� �u�t��v�t�Z�t�d�C/norm��� ,

for u� �N+1,N+2, . . . ,2N� and v� �1,2 , . . . ,N�. Before
carrying out the computation which involves only Gaussian
integrations, we note that the covariance is given by

C�t,s� = exp�− �t − s�A�C + O�exp�− �t + s��/2�� ,

for t�s, and the effects of the second term on the right-hand
side of the equation above vanish in the correlation formula
in the steady state, i.e., in the limit of t→�. We will consider
the case of a small interparticle potential in order to perform
a perturbative analysis. Hence, up to first order in J we have
�the computation is straightforward and we do not give de-
tails here�

lim
t→�


�u�t��v�t�� =
�Jv+N,u−NTu−N − Ju,vTv���u−N + �v�mv

−1

�mu−N
−1 Mu−N − mv

−1Mv�2 + ��u−N + �v���vmu−N
−1 Mu−N + �u−Nmv

−1Mv�
. �15�

For simplicity, in what follows we will restrict the analysis to the case of one-dimensional systems with nearest-neighbor
interactions �and still with J1+N,2= ¯ =Jj+N,j+1= ¯ =J� and we will take uniform coupling to the thermal reservoirs � j =�.
Then, the expansion above becomes

lim
t→�


�u�t��v�t�� =
2J�mv

−1

�mu−N
−1 Mu−N − mv

−1Mv�2 + 2�2�mu−N
−1 Mu−N + mv

−1Mv�
�Tu−N − Tv� . �16�

Now, from �6�, for the heat current we have

F j→j+1  
F j→� =
J

2
��� j − � j+1��� j+N

mj
+

� j+1+N

mj+1
�	 .

Thus, in the steady state where 
dHi /dt�=0, using that

lim
t→�


�u�t��u�t�� = mu−NTu−N, u � �N + 1, . . . ,2N� ,

which gives us limt→�
Rj�t��=0, we have

F1→2 = F2→3 = ¯ = FN−1→N  F . �17�

Using the notation

Jj 
2J2�mj

−1mj+1
−1

�Mj

mj
−

Mj+1

mj+1
�2

+ 2�2�Mj

mj
+

Mj+1

mj+1
�

and from �17� we have

F = J1�T2 − T1� = ¯ = JN−1�TN − TN−1� .

And so, we can write

F =
�

N − 1
�TN − T1� ,

where we have for the conductivity

�

N − 1
= � 1

J1
+

1

J2
+ ¯ +

1

JN−1
�−1

. �18�

Let us consider the case of masses and on-site potentials
with values alternating in the sets �m1 ,m2� and �M1 ,M2�, i.e.,
mj =m1 for j odd and mj =m2 for j even, etc. From �18�, we
have

� =
2J2�m1

−1m2
−1

�M1

m1
−

M2

m2
�2

+ 2�2�M1

m1
+

M2

m2
� . �19�

For m1=m2 and M1=M2, the conductivity becomes

� =
J2

2�mM
, �20�

i.e., the conductivity is proportional to the inverse of the
particle mass and to the inverse of the coefficient of the
on-site potential. In short, from the expressions �19� and �20�
above we obtain mechanisms to change the heat conductiv-
ity. For example, for a system of particles with equal masses
but with on-site potentials with alternating values, the con-
ductivity becomes proportional to the inverse of the square
of the difference between the on-site potential values �instead
of proportional to the inverse of the on-site potential�. Simi-
lar results follow if we alternate the masses of the particles.

We make some comments now. Concerning the physical
interest of the models with unequal masses and/or on-site
potentials, we recall that the study of systems with different
masses is recurrent �17–19�. For example, for 1D harmonic
chain with baths at the boundaries only, the model with equal
masses has been rigorously studied a long time ago in Ref.
�14�, where the authors show that the heat current is inde-
pendent of the system size �in a system where the Fourier
law holds, one has the heat current depending on the system
size as F�1/N�. In sequel, the case of unequal masses has
been studied, e.g., by Lebowitz et al. �17�. In particular, for a
random mass distribution, it is rigorously shown that F
�N−1/2 �18�. Unfortunately, these models do not obey the
Fourier law. We do not know of any similar study for differ-
ent on-site potentials which, however, have well-known
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physical meaning: e.g., low-dimensional lattice structures are
usually grown on a substrate which exerts a pinning force on
the atoms, and such force is represented by an on-site poten-
tial.

To show the trustworthiness of our perturbative computa-
tion, we turn to the model with equal masses and on-site
potentials, and recall that the expressions for the heat con-
ductivity obtained by our first-order perturbative computa-
tion and the exact one described in Ref. �13� are the same
one �see Ref. �15� for details�. In fact, the perturbative treat-

ment of the harmonic chain with stochastic reservoirs is rig-
orously correct, i.e., the perturbative series is convergent
�20�.

As a final comment, we remark that the results presented
here may be useful in the �theoretical� construction of de-
vices such as thermal rectifiers, which have been recently
proposed as a mix of two systems with different heat con-
ductivity.
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